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We address the relaxation dynamics in hydrogen-bonded supercooled liquids near �but above� the glass
transition, measured via broadband dielectric spectroscopy �BDS�. We propose a theory based on decomposing
the relaxation of the macroscopic dipole moment into contributions from hydrogen-bonded clusters of s
molecules, with smin�s�smax. The existence of smax is translated into a sum rule on the concentrations of
clusters of size s. We construct the statistical mechanics of the supercooled liquid subject to this sum rule as a
constraint, to estimate the temperature-dependent density of clusters of size s. With a theoretical estimate of the
relaxation time of each cluster, we provide predictions for the real and imaginary parts of the frequency-
dependent dielectric response. The predicted spectra and their temperature dependence are in accord with
measurements, explaining a host of phenomenological fits like the Vogel-Fulcher fit and the stretched expo-
nential fit. Using glycerol as a particular example, we demonstrate quantitative correspondence between theory
and experiments. The theory also demonstrates that the � peak and the “excess wing” stem from the same
physics in this material. The theory also shows that in other hydrogen-bonded glass formers the excess wing
can develop into a � peak, depending on the molecular material parameters �predominantly the surface energy
of the clusters�. We thus argue that � and � peaks can stem from the same physics. We address the BDS in
constrained geometries �pores� and explain why recent experiments on glycerol did not show a deviation from
bulk spectra. Finally, we discuss the dc part of the BDS spectrum and argue why it scales with the frequency
of the � peak, providing an explanation for the remarkable data collapse observed in experiments.
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I. INTRODUCTION

In this paper we propose a theory, based on a simple
physical model at the mesoscale, that can account quantita-
tively for most of the observed features in the remarkable
relaxation dynamics of glass-forming hydrogen-bonded liq-
uids �1–8�. The paradigmatic example of such systems is dry
glycerol and glycerol-water mixtures, but other alcohols and
alcohol mixtures show similar properties. The relaxation dy-
namics of such systems in the vicinity of the glass transition
exhibit an extremely wide range of frequencies, spanning
sometimes 16 orders of magnitude or more in the frequency
domain. Despite the fact that good measurements have been
available for more than half a century �1�, and after consid-
erable experimental and theoretical effort, including apparent
“first-principles” theories like mode coupling �9�, there is no
accepted derivation of the observed characteristics of the re-
laxation dynamics. Until now most discussions of experi-
mental data are limited to fitting phenomenological expres-
sions that are not the result of a proper theory �10�. The
present paper attempts to close this gap.

An excellent technique to probe this enormous range of
frequencies is broadband dielectric spectroscopy �BDS�
which covers the frequency band �10−5–1011 Hz� and tem-
perature range �100–600 K�. The interpretation of the mea-
surements in BDS is facilitated by the fact that the dielectric
theory for BDS is well established and independent of the
nature of the relaxational mechanisms involved in any par-
ticular material and at any particular temperature and pres-
sure. We can express the frequency-dependent dielectric con-
stant ���� in terms of the Laplace-Fourier transform

���� − ��

�0 − ��

= �
0

� �− d��t�
dt

�e−i�t +
4	i
dc/��0 − ���

�
. �1�

Here �� is the high-frequency dielectric constant due to fast
rotational processes above 1012 Hz and atomic polarization;
�0 is the static dielectric constant; and 
dc is the dc conduc-
tivity of the medium. The response function ��t� is given by
the normalized correlation function of the macroscopic di-
pole moment M�t�,

��t� =
�M�t� · M�0�	
�M�0� · M�0�	

. �2�

A typical BDS absorption spectrum read from the imaginary
part of ���� with dry glycerol at temperature T=196 K is
shown in Fig. 1. One observes what has been termed in the
literature “the main relaxation process” or � peak at fmax

10−1 Hz, and then tapering off initially with a typical
power law form �−�, which will appear as a straight line on
a log-log plot, but is generally followed by a typical wing,
which in Fig. 1 has a gentle curvature at frequencies above
f �102 Hz. This part of the spectrum had been termed in the
literature “the excess wing.” This term does not reflect a
deep realization of the existence of an excess loss, but rather
the name stems simply from the inability of the phenomeno-
logical Davidson-Cole fit formula �11� to agree with the ex-
perimental spectrum at this frequency range. While not in
glycerol, in other hydrogen-bonded glass formers this wing
can also exhibit a clear shoulder or even a distinct second �
peak �6�. The literature does not agree on whether the �
relaxation and the excess wing �or the � peak when it exists�
stem from the same physics or not �7�. A very strong experi-
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mental argument in favor of the very same physics was pre-
sented in �8� where spectra taken at different temperatures
were rescaled by the position and amplitude of the � peak
�see Fig. 2�. The excellent data collapse is a strong indication
that the � process, the excess wing, and the dc conductivity
contribution somehow stem from the same physical mecha-
nism. The theory presented below will corroborate this find-
ing and will clarify the physical origins of the � and � peaks
when both exist.

Of course, the raw spectra exhibit a strong temperature
dependence. Using spectra measured in the range of tem-
peratures 190–240 K in dry glycerol, the positions of the
maxima of the main process have been fitted to the Vogel-
Fulcher formula by defining �max=1 /2	fmax and then writing

�max�T� = �v exp�DTv/�T − Tv�� . �3�

The three parameters were fitted to the data with the results
ln �v=−35.9, D=22.7, and Tv=125 K. Note that this fit im-

plies an attempt time �v
10−16 s, which is a very short time
indeed. We will argue below that the Vogel-Fulcher formula
has no deep meaning, and the parameters involved are of
limited physical interest. Although the spectra derived from
our theory below will be shown to agree with Eq. �3� in the
range of measurement used, we argue that the formula is
nothing but a data fit that can be used only in a finite range of
temperatures. The prediction of the theory described below is
that there is no true divergence of �max at any temperature
T0.

The task of the theorist is then to derive, on the basis of a
clearly defined model, the form of the frequency-dependent
dielectric response ���� for this system, to explain the ob-
served spectra �both real and imaginary parts�. In particular,
a theory should indicate whether the main process and the
excess wing stem from the same physics or whether one
needs to invoke more than one relaxation mechanism. We
will see that the former is the case here. Then one needs to
explain the observed fits to the Vogel-Fulcher formula. While
the present authors do not ascribe much physical significance
to the parameters appearing in the formula, nevertheless the
experimental fits should be accounted for, and hopefully the
origin of the parameters identified. Finally one needs to ex-
plain the remarkable data collapse shown in Fig. 2. We be-
lieve that the present paper achieves these tasks.

In order to understand the broadband dielectric spectros-
copy of glycerol �and in the future water-glycerol mixtures
and other alcohols�, we will treat glycerol in the relevant
range of temperatures as a heterogeneous fluid on macro-
scopic time scales. This picture stems from direct experimen-
tal observations, for example of the rotational diffusion of
dye molecules in supercooled glycerol �cf. �12� and refer-
ences therein�. That is, while on very long time scales the
liquid phase must be homogeneous, there exist localized me-
soscale domains in the fluid that have macroscopic lifetimes.
Indeed, inhomogeneities that appear to survive for 104 s
contribute to the dielectric response in the Fourier domain at
frequencies as low as 10−4 Hz in some cases. We shall de-
velop the theory on the basis that these inhomogeneities are
a distribution of clusters having the structure of an incipient
strongly hydrogen-bonded “frozen” phase and a surrounding
bath of more mobile and less dense “liquidlike” glycerol
phase. In �17� it was presumed that the molecules in the
interiors of the clusters are frozen into energetically favor-
able glassy configurations, just as in the glassy state below
the glass transition. The boundaries between these clusters
must then consist of more disordered material. Building on
this picture, our task is twofold: first, to express the dielectric
response in terms of this cluster distribution; and second, to
find the distribution of clusters. We shall do this using me-
soscale thermodynamic arguments. Once we have these dis-
tributions we describe the resulting BDS, and we shall see
the appearance of both a dominant � peak at low frequencies
and, depending on molecular parameters, an excess wing or a
secondary � shoulder at higher frequencies. We should note
that in spirit our approach combines ideas based on the mo-
lecular dynamics observations by Geiger and Stanley �13� on
the appearance of low-density patches in hydrogen-bonded
water �though in the present context we are actually consid-
ering higher-density patches in hydrogen-bonded glycerol�,

FIG. 1. A typical BDS absorption spectrum read from the imagi-
nary part of ���� for dry glycerol at temperature T=196. The
dashed line is the phenomenological Davidson-Cole formula, which
fails to describe the so-called excess wing.

FIG. 2. Experimental BDS absorption spectra of dry glycerol in
a range of temperatures 202–292 K, where frequencies were re-
scaled to the maximum of the � peak and amplitudes were rescaled
to the amplitude of the same peak. Note that in comparison to Fig.
1 here the dc contribution is also shown. The data collapse indicates
strongly that the � peak, the excess wing, and the low-frequency
conductivity contribution all stem from the same physics.
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together with ideas of Chamberlin �14� and Kivelson et al.
�15,16� on treating such heterogeneities as clusters. The simi-
larity to all these theories extends, however, only up to Eq.
�6� below, after which our theory diverges from theirs. The
crucial differences from previous theories will be pointed out
below as we go along. We trust that the reader will find the
present approach superior in simplicity and in the quality of
the predictions.

In Sec. II we present the dielectric theory for a medium in
which there exist clusters whose dipole moments are respon-
sible for the dielectric response. We estimate the rotational
relaxation time of such clusters, and, most crucially, their
concentrations. In computing the concentrations we deviate
most strongly from all previous theories. In Sec. III we spe-
cialize the theory to the case of glycerol; it is interesting to
see how, by using a modest input of experimental data, we
get naturally a host of results in very good correspondence
with experiments. We explain the apparent Vogel-Fulcher
and stretched exponential fits, but also point out that the
range of validity of these fits is finite, whereas the present
theory is more widely applicable. Section IV opens up the
discussion for other materials, and examines the changes ex-
pected in the spectra when molecular parameters change. We
show how the relative prominence of the � and � peaks
depends on such parameters. In Sec. V we discuss BDS in
constrained geometries and explain why glycerol in small
pores exhibits the same spectra as bulk glycerol; the expla-
nation is that the smallest pores were just big enough to
contain the largest clusters predicted by the theory. Reducing
the pores a bit further should result in a dramatic change in
the spectra. In Sec. VI we explain how the present model
rationalizes the data collapse of the dc conductivity, and in
Sec. VII we present a summary and a discussion.

II. DIELECTRIC THEORY FOR CLUSTERS

A. The physical model and the fundamental assumption

We propose that the long-time relaxation in glycerol
arises due to the existence of clusters of s molecules which
are hydrogen bonded to make the cluster a recognizable en-
tity. We denote the number of clusters of s molecules as Ns.
In terms of these clusters, we can write the dipole moment
of the system, M�t�, as the sum M�t�=��m��t�+Mliquid�t�
where m��t� is the dipole moment of cluster �. We expect
the rotational relaxations of molecules in the liquid to be fast,
and accordingly the fast-relaxing fluid contribution to the
dipole moment, Mliquid�t�, will not be studied in detail, as its
spectrum is expected to be significant only at high frequen-
cies. We expect that in the supercooled liquid relaxation phe-
nomena are relatively rare events, allowing us to assume that
different relaxation events are statistically uncorrelated. This
is the fundamental assumption of the model, i.e., that the
relaxation process in each cluster is statistically independent
of the other clusters. In fact, by a “cluster” we mean a bunch
of molecules that are highly correlated; if there are two ad-
jacent clusters that are highly correlated, they should be con-
sidered as one cluster. With this in mind we can then write

��t� =

�
�

�m��t� · m��0�	

�
�

�m��0� · m��0�	
. �4�

We can rewrite Eq. �4� in terms of an intensive number den-
sity ns=Ns /M, where M is the total number of molecules in
the system:

��t� =

�
s

ns�ms�t� · ms�0�	

�
s

ns�ms�0� · ms�0�	
. �5�

With each cluster we associate its typical rotational relax-
ation time �s, which only in Sec. VI do we identify with the
cluster lifetime. Thus ��t� assumes the form

��t� =

�
s

ns�ms · ms	exp�− t/�s�

�
s

ns�ms · ms	
. �6�

To proceed further we need to estimate ns, �ms ·ms	, and �s.
We start with the static dipole correlations.

B. The static dipole correlations

The dipole moment of a cluster of size s can be expressed
in terms of individual glycerol molecule dipoles di as ms
=�i=1

s di. For a set of noninteracting dipoles �ms ·ms	=sd2,
where d= �di�. We do not expect the dipoles in the clusters to
be totally random, but rather to exhibit strong short-range
correlations due to dipole-dipole interactions. This short-
range order was taken into account explicitly by Kirkwood
�18�, who introduced the so-called Kirkwood factor g:
�ms ·ms	=gsd2, where g1. Obviously this constant is dif-
ficult to calculate for a given material, but luckily it appears
in both the numerator and denominator of ��t� and conse-
quently Eq. �6� reduces to the expression

��t� =

�
s

nss exp�− t/�s�

�
s

nss
. �7�

If we insert Eq. �7� into Eq. �1� and split the dielectric
constant into its real and imaginary parts ����=Re����
+ iIm���� we find

Re���� − ��

��0 − ���
=

�
s

nss�1 + ���s�2�

�
s

nss
,
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Im����
��0 − ���

=

�
s

nss���s� �1 + ���s�2�

�
s

nss
+

4	
dc/��0 − ���
�

.

�8�

Thus we see that we have expressed both the broadband
dielectric constant and loss in terms of the cluster size dis-
tribution and the cluster lifetimes.

C. Relaxation times �s

The rotational relaxation time of the clusters is deter-
mined by the free energy barrier that involves breaking the
hydrogen bonds with the surrounding liquid. We argue that
this is given by an Arrhenius form, where the energy barrier
scales with the surface area of the cluster as the cluster at-
tempts to break the cage of mobile liquidlike molecules in
which it is confined:

�s = �0 exp��̄s2/3/kBT� . �9�

Here the attempt time �0 is of the order of 10−12 s, while the
energy for breaking a typical bond �̄

 can be expected to
scale with the surface energy per molecule. We will estimate
the numerical values of these parameters below in the con-
text of the theory for glycerol.

While Eq. �9� appears rather innocent and perfectly rea-
sonable, its consequences are manifold, lying at the very ba-
sis of our approach. These consequences are explained in the
next section.

D. Mesoscale thermodynamic theory for the cluster
distribution ns(T ,p)

The most interesting part of the theory is the estimate of
the cluster size distribution ns�T , p�. In this section we pro-
vide a thermodynamic theory to estimate this crucial quan-
tity. Our main assertion is that in the supercooled liquid the
state of the system is characterized by the existence of a
maximal cluster size smax which is estimated below from
experimental data. To have a quick estimate of the expected
value of smax, note that, if the relaxation time as expressed in
Eq. �9� were correct, we could estimate the size of the largest
clusters as smax just from looking at the longest relaxation
times observed experimentally. We thus write

smax � ��kBT/�̄�ln�tmax/�0��3/2, �10�

where tmax is the longest time scale observed in the broad-
band spectrum. For example, for glycerol tmax�104 s and
�̄�2kBT �19�; then smax�100. We will see below that in
order of magnitude this estimate is fully justified by the
present theory. Thus, in developing a thermodynamic theory,
we need to invoke a constraint on the size of the maximal
cluster. In other words, we treat the heterogeneities in glyc-
erol in terms of a mesoscale distribution of clusters with a
range of size smin�s�smax in a more mobile bath of liquid-
like molecules. This approach of applying to the glass-
forming liquid statistical mechanics subject to constraints
follows up our previous analysis of other glass-forming liq-

uids �cf. �20–22��. Note that this approach is radically differ-
ent from the proposition of �15,16� where a mysterious
“strain energy” term was invoked to explain why larger clus-
ters are not present in the theory.

The intensive numbers of such clusters of size s are
ns�p ,T�=Ns�p ,T� /M, and the probability that an individual
glycerol molecule belongs to a cluster of size s is cs=nss. We
denote below the number of molecules belonging to the clus-
ters and to the liquid phase by Mc and M�, respectively, with
Mc+M�=M. To describe the mesoscale thermodynamics we
assume that in a cluster at temperature T and pressure p we
have an intensive contribution to the chemical potential

�c = uc + pvc − Tsc, �11�

where the subscript c stands for “cluster” and uc, vc, and sc
are, respectively, the internal energy per molecule, the vol-
ume per molecule, and the entropy per molecule in the clus-
ters. Similarly, in the liquidlike phase we can write for the
intensive contribution to the chemical potential

�� = u� + pv� − Ts�, �12�

where the subscript � stands for liquid and u�, v�, and s� are,
respectively, the internal energy per molecule, the volume
per molecule, and the entropy per molecule in the mobile
liquidlike phase. We expect that uc�u� because the hydro-
gen bonds in the clusters are less distorted; sc�s� because of
the greater number of rotational degrees of freedom in the
mobile phase; and vc�v� because of the higher density of
more solidlike glycerol compared to the liquid. All these in-
tensive thermodynamic variables are in principle functions of
temperature T and pressure p. Apart from these extensive
contributions to the Gibbs free energy Mc�c+M��� where
Mc=�sNss=M�snss=M�scs, we need to consider two other
crucial contributions to the total free energy.

First, there is a surface energy contribution Usurface due to
the interface between each cluster and its surrounding bath.
This scales as the surface area of each cluster and therefore
we can write

Usurface = 
�
s

Nss
2/3, �13�

where 
 is the surface energy per molecule. Obviously, the
value of 
 will turn out to be crucial in determining the
distribution of cluster sizes. To estimate its size, note that 

could be as large as a hydrogen bond energy, but in fact we
expect it to be smaller because the mobile phase is also par-
tially hydrogen bonded. Thus we expect 

u�−uc, which is
some fraction of a hydrogen bond energy.

Second, there will be an entropic contribution due to all
possible spatial configurations of clusters in the glassy liquid.
This is an important contribution to the free energy, favoring
small clusters and being responsible for the � peak when it
exists. In taking the entropy explicitly into account, we de-
viate once more from all previous theories; we cannot see
why the entropy was not considered before. We can estimate
this entropy by sequentially placing all clusters in the avail-
able volume starting with the largest �21�. Thus the volume
available to the largest clusters is V=Mcvc+M�v�. The vol-
ume available to the next largest clusters is V−smaxNsmax

vc,
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etc. As we proceed in this manner, the entropy of mixing is
given by the expression

Smix = − kB�
s

Ns�xs ln xs + �1 − xs�ln�1 − xs�� , �14�

where kB is Boltzmann’s constant and
Ns= �V /vc−�s�sNs�s�� /s is the number of boxes available
to clusters of size s, while xs=Ns /Ns is the fraction that is
occupied. Thus

xs =
cs

�
s�=smin

s

cs� + �

,

� � �v�/vc�c�, �15�

where c� is the fraction of molecules in the liquidlike phase,
and of course the sum of the concentrations of molecules in
the condensed and liquidlike phases obeys

cc + c� = 1.0. �16�

At this point we introduce v as the average volume per glyc-
erol molecule in our system, where of course

v = ccvc + c�v�. �17�

We can now solve Eqs. �16� and �17� for cc and c� in terms
of these three volumes per molecule and write the crucial
sum rule

�
s=smin

smax

cs � cc =
v − v�

vc − v�

. �18�

This is the crucial constraint on the thermodynamic theory;
we will impose this constraint on our solution by choosing
the largest cluster s=smax such that Eq. �18� is obeyed.

The free energy for our system is given by the expression

F = U − TS = Mc�c + M��� + 
�
s

Nss
2/3

+ kBT�
s

Ns�xs ln xs + �1 − xs�ln�1 − xs�� �19�

and the chemical potential of a cluster of size s is given by

�s = s� = �F/�Ns

= �cs + 
s2/3 + kBT�ln xs + �
s�s

�s/s��ln�1 − xs��� .

�20�

Rewriting Eq. �20� for the chemical potential per molecule in
the cluster,

� = �c + 
s−1/3 + kBT��1/s�ln xs + �
s�s

�1/s��ln�1 − xs��� .

�21�

The chemical potential in the liquid phase must be the same
as that calculated for the clusters and given by Eq. �21�, and
therefore

� = �� + kBT�v�/vc��
s

�1/s�ln�1 − xs� . �22�

We can use Eq. �22� to define a new chemical potential ��
=�− ��−��� / �v� /vc�−�c which together with Eq. �21� then
obeys

�� = 
s−1/3 + kBT��1/s�ln�xs/�1.0 − xs��

− �
s��s

�1/s��ln�1 − xs��� . �23�

In this form it is easy to solve these equations numerically in
a sequential fashion, starting with s=smin. Using Eq. �23� we
see that the concentration of the smallest clusters csmin

obeys

�� = 
smin
−1/3 + kBT�1/smin�ln�csmin

/�� . �24�

To estimate smin we note that in three dimensions a “cluster”
must have at least 2–3 molecules in each direction to be
identifiable as a cluster. Thus the minimal value of s is about
20. We do not know �� a-priori, depending as it does on the
details of the energies, structure, and entropies in the clusters
and liquidlike phases, so instead we have taken the data from
�23� for the average size of the clusters sav=�sscs /�scs.
From this we determined the value of csmin

; for example we
find a value at T=200 K which is csmin

=c�s=20�=0.0035
and determined everything else from that. We are now in a
position to estimate �� from Eq. �24�. Then all the values of
cs for ssmin follow from Eqs. �23� in order until Eq. �18� is
satisfied. We will see below that for glycerol the largest s
predicted by the theory is about 100. The reader should note
that we are not making any effort here to best fit the data of
glycerol; rather we are after the essential qualitative issues. It
is surprising in fact that we get semiquantitative agreement
below. Needless to say, one can fit everything much more
closely to experiment, but this is not the main aim of this
paper.

III. PREDICTIONS FOR BROADBAND DIELECTRIC
SPECTROSCOPY: THE CASE OF GLYCEROL

Examining our expressions for the distribution of clusters
given by Eqs. �23� and �24�, we note that, in order to apply
the theory to a particular substance, we are missing the value
of the surface energy 
, say for glycerol. Since this quantity
appears inside exponential forms we need a rather accurate
value for comparison with experimental data. One approach
would be to fit our dielectric spectra at one temperature and
then use the fitted parameters to predict its form at different
temperatures. Here we have taken a slightly different ap-
proach, using available glycerol data. There are two types of
data. The first concerns the average volumes per glycerol
molecule in the liquid, solid, and glassy phases. For v� we
employed data of liquid glycerol at room temperature, giving
v�=121 Å3. For vc and v we took data from �24�, which
give for the cluster phase vc=110 Å3 and for the glassy
phase v=113 Å3 at atmospheric pressure. These numbers
were used to estimate the constraint given by Eq. �18�. The
second type of data we have at our disposal concerns the size
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of dynamic heterogeneities as a function of temperature. We
have taken data from �24� for the average size of such het-
erogeneities sav=�sscs /�scs. The data used were
sav�T=210 K�
50, sav�T=205 K�
58, sav�T=200 K�

67, and sav�T=195 K�
73. These two pieces of informa-
tion can be accommodated in our theory using 
 /kB
=320 K or 
 /kBT
1.6. We then predict the maximal cluster
sizes at these temperatures to be smax�T=210 K�
63,
smax�T=205 K�
72, smax�T=200 K�
81, and
smax�T=195 K�
87. Using these data we then studied the
theoretical predictions for glycerol.

As noted above, the distribution of clusters between smin
and smax is strongly dependent on surface energy. Using

 /kB=320 K, we plot the cluster size distribution ns and the
density of molecules as a function of cluster size s for dry
glycerol at T=210, 205, 200, and 195 K. Small clusters are
favored at higher temperatures, when the entropy of mixing

dominates the distribution �see Fig. 3�. But as the tempera-
ture is reduced, larger clusters are favored, as energy domi-
nates the distribution. In general, the distribution is bimodal,
favoring small and large clusters at the expense of interme-
diate sizes �see Fig. 3�. We note that the sharp cut of the
distribution at s=smax is a bit artificial; in reality, one can
expect a sharply decaying tail at s values slightly larger than
smax. We do not expect such minor details to influence the
main results presented below.

We are now in a position to calculate both ��t� from Eq.
�7� and the real and imaginary parts of the dielectric function
from Eq. �8�. This quantity had been fitted phenomenologi-
cally to a stretched exponential form, ��t��exp− �t /���K, a
form referred to in the literature as the Kohlrausch-Williams-
Watts relaxation function �see, for example, �25��. To see
whether this form is justified by the present theory we plot
our computed function in the appropriate coordinates �see
Fig. 4�. Indeed, a stretched exponential with 0.4��K
�0.66 gives an acceptable fit over a broad range of time
scales tmin�10−6� t� tmax�100 s, with deviations at both
shorter and longer times. We note that �K is temperature
dependent and stress that the stretched exponential form has
a limited value in the sense that it is just an acceptable fit in
a limited range for a very different function. Nevertheless,
the numerical value of �K and its variability with the experi-
mental conditions are both confirmed by experiments in
glycerol; see, for example, �8,25�.

Of greater interest is the dielectric spectrum and loss
function �see Fig. 5� which correspond to the distributions
shown in Fig. 3 with T=210, 205, 200, and 195 K, respec-
tively. The real part of the dielectric constant Re���� starts to
decline from �0 to its asymptotic value of �� at around �

�max but takes several frequency decades to achieve as-
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ymptotia. We refer the reader to �8,25� and references therein
to note that both the qualitative form of Re���� and its quan-
titative details are in close correspondence with experiments
in glycerol �as well as in glycerol-rich water mixtures�.

The shape of Im���� is controlled by the shape of the
cluster size distribution. There is always a clear � peak at
low frequencies �max defined by d Im���max� /d�max=0,
associated with the largest clusters. Very roughly �max
�1 / tmax. But we can also see at all temperatures a clear
excess wing at higher frequencies. As the temperature is low-
ered the excess wing becomes slightly less pronounced. Note
that the very sharp fall-off at the highest frequency is due to
our neglect of the liquid phase fast-relaxing contribution. For
a full quantitative comparison between theory and experi-
ment, this contribution should be taken into account; this will
be done in a future presentation.

The next interesting question is whether we can justify
theoretically the Vogel-Fulcher plots. To answer this question
we plot the computed values of �max in a Vogel-Fulcher form
as in Eq. �3� �see Fig. 6�. In this plot we display, on purpose,
the whole temperature range including Tv to stress the absur-
dity of such a fit. Nevertheless, a straight line can be fitted
through the computed points. Using the same �unphysical�
attempt time of ln �v=−35.9 as in the experimental fits for
glycerol, the straight line best fit gives Tv=129 K and
a fragility D=20.0. This should be compared with Tv
=125 K and D=22.7, which are the numbers reported ex-
perimentally. Our conclusion is that the theory explains both
the stretched exponential fits to the relaxation function and
the Vogel-Fulcher fit, but both are fundamentally meaning-
less, and should be replaced by a theory of the type proposed
here.

IV. THE ROLE OF SURFACE ENERGY: CLUSTER
DISTRIBUTIONS AND DIELECTRIC SPECTRA

To understand the experimental results for glycerol, we
chose the crucial parameter 
 from structural data. In this
section we ask a different question—what is the qualitative
influence of the surface energy 
 on cluster size distributions
and dielectric responses? In particular, we are interested in
the possibility of generating a distinct � peak by changing
only one molecular parameter, which is 
. To study this
question we fix smax=100 and T=200 K and study the effect
of changing the surface energy. We choose four values

 /kBT=1.0, 1.25, 1.5, and 1.75. As we increase 
, the aver-
age cluster size increases: sav�
 /kBT=1.0�
48, sav�
 /kBT
=1.25�
76, sav�
 /kBT=1.5�
87, and sav�
 /kBT=1.75�

91. The complete distribution can be seen in Fig. 7. As 
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increases, large clusters are favored over small clusters; 

has a crucial qualitative influence on the bimodality of the
distribution.

The change in surface energy must also influence the dy-
namics. We asserted that the rotational lifetimes �s of clusters
of size s are given by Arrhenius forms where the energy
barrier scales with the surface area of the cluster, as the clus-
ter attempts to break the cage of mobile liquidlike molecules
in which it is confined. The energy for breaking a typical
bond can be expected to scale with the surface energy 
. In
Fig. 8 we have plotted the behavior of ��t� in a stretched
exponential form to show scaling in time for 
 /kBT=1.0,
1.25, 1.5, and 1.75. Note that as 
 increases the stretched
exponential regime increases due to a more pronounced �
peak, while at low surface energies the high-frequency �
peak destroys this kind of scaling.

Of greater interest are the dielectric spectra and loss func-
tions �see Fig. 9� which correspond to the distributions
shown in Fig. 7 with 
 /kBT=1.0, 1.25, 1.5, and 1.75, respec-
tively. The shape of Re���� corresponds to a decline from �0
to �� starting at �max, but one interesting point is that the �

peak can lead to a shoulder here also. The shape of Im���� is
again controlled by the cluster size distribution. There is al-
ways a clear � peak at low frequencies. But for lower values
of the surface energy, small clusters are encouraged, result-
ing in a prominent � peak at high frequencies. As the surface
energy increases the � peak becomes less pronounced turn-
ing first into a shoulder at intermediate frequencies �see Fig.
9�, and finally into the anomalous scaling observed in many
experimental data sets �see Fig. 9�. These interesting quali-
tative findings will be turned into quantitative comparisons
with experiments in different materials in a later presenta-
tion.

V. BDS IN CONFINED GEOMETRIES

In this section we discuss the BDS of glycerol in confined
geometries. We refer here in particular to the experimental
studies reported in �26�, in which it was shown that glycerol
could be confined in pores whose diameter d can be as small
as d=2.5 nm in size without seeing any appreciable effect in
the position of the � maximum or its amplitude. Since we
expect that the maximum size cluster should be limited by
the size of pores, it appears surprising that there is no con-
finement effect in the spectra. If our arguments are correct as
presented in this paper, there must be a point at which the
dielectric loss will be strongly affected by confinement. To
estimate where this should happen we equate the volume of
the pore to the volume of the largest cluster, i.e.,

	d3/6 
 smaxvc. �25�

Using our estimates of vc and referring to the temperatures
employed in �26�, we find that confinement effects are ex-
pected to appear when the diameter satisfies d�2.5 nm.
Thus the experiment just missed the confinement effect by a
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hair. In Fig. 10 we present our own prediction as to how the
expected position of �max depends on the confining pore di-
ameter. Note that there is no effect down to a critical pore
diameter, below which the shift in �max is dramatic. Here we
are plotting the shift as a function of pore diameter at fixed
temperature. We also note that, as a function of temperature,
clusters tend to grow or shrink, and therefore confinement
effects should be more dramatic at lower temperatures where
the unconfined clusters are expected to be larger.

VI. THE dc CONDUCTIVITY AND THE DATA COLLAPSE

One particularly interesting aspect of the glycerol mea-
surements, i.e., the data collapse shown in Fig. 2, was not
used yet to challenge the theory. Note that the experimental
data collapse includes the clearly identified dc branch below
frequencies � /�max
10−3. In this section we explain why
the dc conductivity scales together with the peak �max of the
� peaks and then demonstrate the data collapse of the theo-
retical spectra.

Consider a charge carrier �say a proton� under a dc volt-
age drop. It is natural to assume that this charge carrier can
very rapidly move on a cluster of size s, but it is practically
jammed when in the liquidlike phase. Thus it can swiftly
move a distance of the cluster size Rs�s1/3a, where a is the
inner length scale of the order of vc

1/3. After such motion the
charge carrier becomes jammed again until a time of the
order of �s, after which the charge carrier can encounter a
new cluster of a different size s�. Note that here we assume
that the rotational relaxation time and the lifetime of the
cluster are of the same order of magnitude. Another way of
stating the dynamics just described is in terms of a local
diffusion constant

Ds � Rs
2/�s � �a2/�0�s2/3 exp�− 
s2/3/kBT� . �26�

Over long periods of time the diffusing particle will be
jammed by a series of clusters �. The resultant average par-
ticle diffusion D�T� can then be estimated as follows. In a
long time t=��t�, the associated mean square displacement
obeys R�t�2=��R�

2 . Thus the time-averaged diffusion con-
stant is D�T�=limt→� R�t�2 / t, while replacing the time aver-
age by an ensemble average over the cluster distribution re-
sults in the expression
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D�T� = �a2/�0�
�

s

nss
2/3

�
s

ns exp�
s2/3/kBT�
. �27�

Let us plot Eq. �27� using the parameters we used for glyc-
erol previously. In the upper panel of Fig. 11, we have plot-
ted the logarithm of D�T� for T=210, 205, 200, and 195 K.
The diffusion coefficient changes by about four orders of
magnitude in the given range of temperatures. Nevertheless,
to a very good approximation,

D�T� � a2�max�T� . �28�

This is demonstrated in the lower panel, where despite the
large variation in the diffusion coefficient it scales as the
peak of the � spectrum �max�T�.

At this point we recall the Einstein relation between the
dc conductivity 
dc and the diffusion coefficient of the
charge carriers:


dc =
nq2D�T�

kBT
, �29�

where n is the density of charge carriers, which for
hydrogen-bonded liquids we assume to be the density of free
protons, and q= +e is their charge. Equation �29� implies that


dc �
a2nq2

kBT
�max�T� . �30�

Accordingly, we conclude that the whole BDS spectrum
should remain invariant to a rescaling of the frequency by
�max�T�, for a reasonable range of T, as was indeed done
with the experimental spectra. We present our theoretical
spectra in a similar manner, rescaling the frequency � and
the amplitude ����� by the frequency and amplitude of the �
peak. The result of the exercise is shown in Fig. 12, without
any attempt to refit any of the material parameters. Note the
data collapse, with the excess wings failing to collapse per-
fectly. In fact, one could get an excellent collapse here by
changing the exponent in the relaxation rate from s2/3 to s0.57.
Whether this indicates that the clusters are not compact but
have a fractal structure is not known at this moment in time.
We found no justification for such refits at this point, since
the neglected fast-relaxing contribution due to the liquid
phase is also needed here for a quantitative comparison. As
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we said above, we defer the detailed quantitative fits to a
future presentation where theory and experiments will be
compared in full detail.

VII. DISCUSSION

We have shown how a relatively simple model of uncor-
related cluster relaxations can account, without much param-
eter fitting, for the qualitative and even the quantitative as-
pects of the observed BDS in hydrogen-bonded liquids. The
theory was demonstrated for glycerol, but obviously with a
mere change of molecular parameters it should apply to a
broad range of other hydrogen-bonded liquids. It was dem-
onstrated explicitly that the � and � regions of the dielectric

spectra can in principle stem from the very same physics,
and their relative amplitudes are determined by the relative
population of small or large clusters. The relative population
is determined by entropic effects, which were explicitly
taken into account in our thermodynamic theory, and by the
surface energy per molecule in addition to the temperature.
Applications to other materials will be presented elsewhere.
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